scholarly journals What is the “Near-Inertial” Band and Why Is It Different from the Rest of the Internal Wave Spectrum?

2001 ◽  
Vol 31 (4) ◽  
pp. 962-971 ◽  
Author(s):  
Chris Garrett
Keyword(s):  
1975 ◽  
Vol 67 (4) ◽  
pp. 667-687 ◽  
Author(s):  
A. D. McEwan ◽  
R. M. Robinson

A continuously stratified fluid, when subjected to a weak periodic horizontal acceleration, is shown to be susceptible to a form of parametric instability whose time dependence is described, in its simplest form, by the Mathieu equation. Such an acceleration could be imposed by a large-scale internal wave field. The growth rates of small-scale unstable modes may readily be determined as functions of the forcing-acceleration amplitude and frequency. If any such mode has a natural frequency near to half the forcing frequency, the forcing amplitude required for instability may be limited in smallness only by internal viscous dissipation. Greater amplitudes are required when boundaries constrain the form of the modes, but for a given bounding geometry the most unstable mode and its critical forcing amplitude can be defined.An experiment designed to isolate the instability precisely confirms theoretical predictions, and evidence is given from previous experiments which suggest that its appearance can be the penultimate stage before the traumatic distortion of continuous stratifications under internal wave action.A preliminary calculation, using the Garrett & Munk (197%) oceanic internal wave spectrum, indicates that parametric instability could occur in the ocean at scales down to that of the finest observed microstructure, and may therefore have a significant role to play in its formation.


2019 ◽  
Vol 46 (24) ◽  
pp. 14644-14652 ◽  
Author(s):  
Zhiwu Chen ◽  
Shaomin Chen ◽  
Zhiyu Liu ◽  
Jiexin Xu ◽  
Jieshuo Xie ◽  
...  

2020 ◽  
Vol 50 (7) ◽  
pp. 1871-1891 ◽  
Author(s):  
Friederike Pollmann

AbstractA key ingredient of energetically consistent ocean models is the parameterized link between small-scale turbulent mixing, an important energy source of large-scale ocean dynamics, and internal gravity wave energetics. Theory suggests that this link depends on the wave field’s spectral characteristics, but because of the paucity of suitable observations, its parameterization typically relies on a model spectrum [Garrett–Munk (GM)] with constant parameters. Building on the so-called “finestructure method,” internal gravity wave spectra are derived from vertical strain profiles obtained from Argo floats to provide a global estimate of the spatial and temporal variability of the GM model’s spectral parameters. For spectral slopes and wavenumber scales, the highest variability and the strongest deviation from the model’s canonical parameters are observed in the North Atlantic, the northwest Pacific, and the Southern Ocean. Internal wave energy levels in the upper ocean are well represented by the GM model value equatorward of approximately 50°, while they are up to two orders of magnitude lower poleward of this latitude. The use of variable spectral parameters in the energy level calculation hides the seasonal cycle in the northwest Pacific that was previously observed for constant parameters. The global estimates of how the GM model’s spectral parameters vary in space and time are hence expected to add relevant detail to various studies on oceanic internal gravity waves, deepening the understanding of their energetics and improving parameterizations of the mixing they induce.


1976 ◽  
Vol 77 (1) ◽  
pp. 185-208 ◽  
Author(s):  
Kenneth M. Watson ◽  
Bruce J. West ◽  
Bruce I. Cohen

A surface-wave/internal-wave mode coupled model is constructed to describe the energy transfer from a linear surface wave field on the ocean to a linear internal wave field. Expressed in terms of action-angle variables the dynamic equations have a particularly useful form and are solved both numerically and in some analytic approximations. The growth time for internal waves generated by the resonant interaction of surface waves is calculated for an equilibrium spectrum of surface waves and for both the Garrett-Munk and two-layer models of the undersea environment. We find energy transfer rates as a function of undersea parameters which are much faster than those based on the constant Brunt-ViiisSila model used by Kenyon (1968) and which are consistent with the experiments of Joyce (1974). The modulation of the surface-wave spectrum by internal waves is also calculated, yielding a ‘mottled’ appearance of the ocean surface similar to that observed in photographs taken from an ERTS1 satellite (Ape1 et al. 1975b).


Sign in / Sign up

Export Citation Format

Share Document